

 Centre for Product Design and Manufacturing

IISc Bangalore

Project Title: Control and Navigation of Differential Drive Mobile Robot

Video Link: My_Work

Funding Agency: 1. Department of Heavy Industries, Government of India

 2. CEFC Smart Factory, IISC Bangalore

 3. Robotics Innovations Lab, CPDM, IISC Bangalore

Project Overview

❖ Project consists of a programmable mobile robot(built using solidworks, 3-D printed

and Arduino)

❖ Mobile robot communicates on MATLAB over Wi-Fi

❖ Install color-coded sticker on robot top to serve as a marker to assist the image

processing algorithm which uses a webcam to detect location and orientation of the

robot.

❖ Program mobile robot to perform tasks

➢ Path Following

➢ Moving objects with a forklift

➢ Obstacle avoidance

Learning Objectives

❖ Assemble and configure different robotic components with the Arduino boards

❖ Capabilities about Arduino MKR1000 and Arduino MKR Motor Carrier.

❖ Understanding of robotics fundamentals

➢ Working of differential drive robots and simulating their behavior

➢ Control position or speed of differential drive robots

➢ Perform localization and navigation

❖ Use MATLAB for programming the mobile robot.

❖ Vision-based image processing algorithm using a webcam for localization and

navigation tasks.

Components Required
● Arduino MKR1000 1 nos.

● Arduino MKR Motor Carrier 1 nos.

● DC Motors with Encoders 2 nos.

● Standard Micro Servo 1 nos.

● Webcam 1 nos.

● Micro USB Cable 1 nos.

● Lipo battery 1 nos.

https://drive.google.com/file/d/18dZj0hBq_IXiXOePiThwjJaM5EECRZ0Z/view

● Ultrasonic Sensor Module 1 nos.

● IR sensor Module 5 nos.

● Caster wheel 1 nos.

● DC motor mounting brackets 2 nos.

● Distance spacers 4 nos.

● Wheels 2 nos.

● Some additional components like screwdriver, nuts, bolts,color coded stick etc.

Exercises

Following exercises to be performed
● Exercise 1: Characterize a DC Gear Motor using MATLAB

● Exercise 2: Control the Mobile Rover and Forklift using MATLAB.

● Exercise 3: Kinematic and Dynamic Modelling of the Mobile Robot and Drive the

Robot using Open Loop Control

● Exercise 4: Closed Loop Control of Rover Position and Orientation to Follow Specific

Instructions

● Exercise 5: Vision based Localization using Webcam to Calculate Robot and Object

Position in the Arena

● Exercise 6: Navigate the Arena and Move the Object

● Exercise 7: Line Following and Obstacle Avoidance

EXERCISE 1: CHARACTERISE A DC GEAR MOTOR USING

MATLAB
In this section, we will write a MATLAB program that automatically measures the
motor speed while issuing many different PWM commands to characterize the
response of the 300:1 DC gearhead motor. Later, we will use these observations to
determine the required PWM command to rotate the motor at a desired rotational
speed.

Characterizing using PWM based Speed Control of DC Motor

Principle:

● Supplied a fixed voltage (Here, fixed voltage = battery voltage (11.1V)).

● Motor starts rotating immediately as voltage is applied.

● Voltage is then removed and the motor ‘coasts.

● By continuing this voltage on/off cycle with a varying duty cycle, the motor

speed can be controlled.

Equations Guiding Operation of DC Gear Motor

Voltage Equation

V = E
b
 + I

a
 * R

a

Induced Back Emf

E
b
 = k

f
*Φ*ω = K

m
*(N*300)

Torque Equation

T
a
 = k

t
*Φ*I

a
 = K

T
*I

a

Where

V = Terminal Voltage

E
b
 = Induced back emf

I
a
= Armature current

R
a
 = Armature Resistance

k
f
 = Constant based on machine construction

k
t
 = Constant based on machine construction

Φ = magnetic flux

ω = angular speed of the motor

K
m
 = voltage constant

N = shaft speed(in RPM)

K
T
 = Torque constant

Results

Fig.2: Shaft Speed v/s Armature Current

Fig.3: Shaft Speed v/s Torque Fig.4: Armature Current v/s Torque

Fig.1: Motor Steady State Response

In Fig. 1, we can notice some interesting features of the speed-PWM relationship
that you can deduct from studying the graph. There is a "dead zone" around
PWM=0, where there is zero rotational speed for non-zero PWM commands.
Furthermore, there may be some non-monotonic portions of the curve, where the
measured speed does not increase with increasing PWM command. This typically
happens around PWM = +/- 1, but could also result from experimental error.

EXERCISE 2: CONTROL THE ROVER AND FORKLIFT

FROM MATLAB
The mini mobile rover is a differential drive robot that has separate DC motors controlling

each of its wheels. We can control the direction of travel by varying the speed of each wheel

without the need for any separate steering mechanism. In this exercise, you will learn how to

drive the rover and operate the forklift using MATLAB.

In this exercise, we will learn to:

• Connect MATLAB to the rover over Wi-Fi

• Control basic movement of a differential drive robot.

• Drive the rover in a straight line.

• Drive the rover in circles.

• Control the forklift of the rover.

2.1 Connect to the Hardware via Wifi

1. Connect the Arduino MKR1000 to the system via a micro USB cable.

2. Enter the following command in the control window of MATLAB

>> arduinosetup % Set up our Arduino board with the MATLAB environment.

Follow the steps as shown:

Fig. 5: Arduino setup
Note: Do not switch off

power supply to Arduino

board after setup

Fig.: 5(a) Fig.: 5(b) Fig.: 5(c)

In Fig. 5(a), we will be selecting the Wi-Fi option. Select the encryption type of the
Wi-Fi and enter the SSID and the password corresponding to it. Make sure that the
system in use is also connected to the same Wi-Fi.
Select the libraries required. The ones shown in Figure 5(b) are the basic libraries
which needed to be uploaded for the project. Later on, in obstacle avoidance
problem, we shall select the Ultrasonic library as well. After selection, press
“Program” to upload to the Arduino server. After few minutes, it should show
Success as shown in Figure 5(b).
In Fig. 5(c), we clear the workspace of MATLAB before running this setup. If
everything is good, then the Test connection will show successful.

1.2 CONTROL THE ROVER FROM MATL AB
I. Drive in a straight line
We probably know intuitively that the rover will travel in a straight line if both wheels
spin at the same speed and in the same direction. Let's spin the rover's DC motors
at the same speed and observe whether it goes in straight line as expected.
MATLAB CODE for driving the rover in a straight line

clear;
clc;
a = arduino(); % Initialise the arduino object
carrier = addon(a,'Arduino/MKRMotorCarrier'); % Intermediary between
% Arduino object and DC and servo motors
dcmleft = dcmotor(carrier,4); % Object giving control of the motor connected
to M4
dcmright = dcmotor(carrier,3); % Object giving control of the motor connected
to M3
dcmleft.DutyCycle = 0.25;
dcmright.DutyCycle = 0.25;
start(dcmleft); % start left motor
start(dcmright); % start right motor
pause(3); % Ensure that the rover move for 3 seconds
stop(dcmleft); % stop left motor
stop(dcmright); % stop the right motor

Note: Do not switch off power supply to Arduino board after setup. Otherwise
have to do the entire setup again.

Measure how far the rover moved when using these commands. Since the
information coming from the encoders attached to each one of the DC motors is not
being read yet, there is no way to ensure that the rover will either move completely
straight (there might be slight differences in behaviour between the motors), or that it
will move the same distance each time the program is executed (as time goes by,
the batteries will have less and less charge and will behave differently).

REVIEW/SUMMARY

• We have seen how to drive the rover in a straight line and in circles.

• We have seen how to control the forklift, which will be used in later exercises to lift

the target.

Exercise 3: Kinematic and Dynamic Modelling of the Mobile Robot

and Drive the Robot using Open Loop Control

In Exercise 1, we learned how to make the rover drive in a straight line and in circles.
However, to move the rover along more complex paths we need to understand the
underlying kinematic equations that relate the speed of each wheel to the rover
velocity and direction of travel
In this exercise, we will learn to:

• Understand kinematic equations of the rover

• Simulate the rover using kinematic equations.

• Model and simulate rover movement using MATLAB.

• Perform open-loop control of the rover.

• Use MATLAB models to control the actual rover.

3.1 KINEMATICS OF THE ROVER
The following diagram shows the basic kinematics of the rover (or any differential
drive robot):

Parameters of differential drive robots as in

Fig. 6

Radius of rotation (R),

Rate of rotation (ω),

Instantaneous center of curvature (ICC),

Forward velocity (v),

Wheel velocities (v
l
, v

r
)(v

l
 = forward

velocity for the left wheel , v
r
 - forward

velocity for the right wheel),

and Rover length (L)
Fig. 6: Basic kinematics of the differential

drive wheeled mobile robot

Rate of rotation: ω = (vr - vl)/L

Forward velocity: v = (vr + vl)/2

Wheel velocities (vl, vr) based on wheel radius (r)

and rotational speeds (ωl, ωr):

v
l
 = ω

l
.r

v
r
 = ω

r
.r

Plugging these values into the previous equations

yield:

ω = r.(ω
r
 - ω

l
) /L

v = r.(ω
r
 + ω

l
) /2

Rearranging these equations:

ω
r
+ ω

l
 = 2.v/r

ω
r
 - ω

l
 = Lω /r

Solving for ωr and ωl:

ω
r
 = (v + (L/2)*ω) /r

ω
l
 = (v - (L/2)*ω) /r

Kinematic Modelling of the Differential Drive Robot

ω
r

ω
l

v

ω

= (1/r)* 1 -L/2

1 L/2

In matrix form:

For robot used, L = 12 cm and r = 4.5 cm.

Dynamic Modelling of the Differential Drive Robot
[1]

Lagrange dynamic approach very powerful method for formulating the equations of

motion of mechanical systems.

Differential Drive Mobile Robot dynamics can be expressed as a function driving

motor torques(𝜏𝑅 , 𝜏𝐿) and linear and angular velocities derived from the kinematic

modelling as:

(𝑚 +
2𝐼𝑤
𝑅2

) 𝑣̇ − 𝑚𝑐 ⅆ𝜔
2 =

1

𝑅
(𝜏𝑅 + 𝜏𝐿)

(𝐼 +
2𝐿2

𝑅2
𝐼𝑤) 𝜔̇ + 𝑚𝐶ⅆ𝜔𝑣 =

𝐿

𝑅
(𝜏𝑅 − 𝜏𝐿)

Here m
c
 = Mass of the robot

without driving wheels

I
w
 = moment of inertia of

wheel

I = moment of inertia of the

robot

Simulating the Robot’s Motion
[2]

The location (x, y) and heading (𝜃) of the rover in an X-Y coordinate system can be

described using the following equations:

𝜃(𝑡) = ∫𝜔(𝑡) ⅆ𝑡

𝑡

0

 𝑥(𝑡) = ∫𝑣(𝑡) 𝑐𝑜𝑠 𝜃 ⅆ𝑡

𝑡

0

𝑦(𝑡) = ∫𝑣(𝑡) 𝑠𝑖𝑛 𝜃 ⅆ𝑡

𝑡

0

Drive the Mobile Robot using open Loop Control

ω

Convert to

wheel velocities

v

Forward Velocity

Angular Velocity

v

ω

ωl

ωr

Fig.7: Open Loop Control of the Mobile Robot

Robot

.

As we can see that the rover does not travel the desired distance. In general, it's
very difficult to accurately control your system using open-loop control unless we
have a very accurate model of your motor behaviour and operating environment. In
our case, the motor characterization was not rigorous and a simple relationship for
PWM versus motor speed was used. That said, even if the characterization were
rigorous there would be issues if you want to operate the rover on a surface different
than the surface used for motor characterization, or if the battery is not operating at
the same voltage.

Input Commands: Forward Velocity, Angular Velocity

Fig. 8(a) Fig. 8(b)

Fig. 8: Input Signal Commands

Results

Fig. 9: Distance travelled by the robot

Final Percentage Error = (58.41-30)/30 X 100% =

95.03%

Fig. 10: Orientation of the robot

Final Percentage Error = (360-180)/180 * 100 =

100%

(For distance travelled) (For Orientation)

RE VIEW/SUMMARY

• We saw how to use kinematic equations and inverse kinematics to

• simulate the rover movement.

• We saw how to translate that understanding to control the rover in the real world.

• We saw that the mathematical modelling needs to be tweaked to better accommodate

real-life conditions.

Exercise 4: Closed-loop Control of Robot Position and

Orientation to Follow Specific Instructions

In this exercise, we will use to implement a PID controller that controls the distance
moved by the rover. We will learn how to read the encoder data from the robot's
wheels and use this data as feedback to your controller. We will also learn how to
tune PID values of the controller to optimize performance.
In this exercise, we will learn to:

• Understand basics of a PID controller design controller.

• Tune parameters of a controller.

• Implement a closed loop controller on the rover.

• Program the rover to follow specific tasks.

Fig.11: Closed Loop Control of the Robot

x
d
= Desired distance travelled

θ
d
= Desired Orientation

x = current distance travelled

θ = current orientation

v = Forward velocity

ω = rate of rotation

ω
l
= left wheel angular velocity

ω
r
 = left wheel angular velocity

Here

e
x
= error signal for controlling distance

e
θ
= error signal for orientation

Experimental Results

Desired distance to be covered = 30 cm

Desired orientation = 180°

Fig.12: Control Distance Travelled

After trial-and-error method,

Kp = 0.25, Ki = 0.05 and Kd = 0.005

Rise time = 2.5 seconds;

Percentage error = 0.29%

Results

Fig.13: Control Orientation

After trial-and-error method,

Kp = 3, Ki = 0.75 and Kd = 0.001

Rise time = 1.5 seconds

Percentage error = 5.55%

Fig.15: Performance Comparison: Orientation

Error

Performance: Open Loop Control v/s Close Loop Control

Fig.14: Performance Comparison: Error in Distance

Travelled

When working with mobile robots, it's often important to know their location as they move
around. This exercise shows how to use a webcam with a localization algorithm to
calculate the robot's location and heading. To ensure the robot remains in the
webcam's field of view, the robot's movement will be constrained within a designated
"arena".
In this exercise, we will learn to:

• Set up and calibrate the rover's operating environment.

• Use localization to calculate the rover's position and orientation.

The main requirement for the arena is that it must have a white background. The
size of the arena is flexible, but it must fit within the field of view of your webcam.
The localization algorithm requires that the webcam be placed at least 100 cm
(Approximately 3.5 feet) above the arena.

Adjust the location of the webcam and the size and placement of the arena until it fits
within the field of view as shown in the image below.

While build the arena, ensure that the white background extends beyond the actual
size of the arena. Based on our experience, roughly a 5 cm padding on all sides is
needed for the image processing algorithm. This will ensure that there is some buffer
space between the floor and the arena. Mark the corners of the arena, centres of all
edges and the overall centre point with an X that is visible from at least 100 cm
away, as we saw in the picture. A black marker was used for this operation.

For the calibration to work, the algorithm needs to know the arena dimensions. Enter
your arena's height and width

Exercise 5: Vision based Localization using Webcam to

Calculate Robot and Object Position in the Arena

❖ Building an Arena for the Rover

Fig.16: Arena for the robot to navigate

❖ Calibrate The Arena And The Environment

1. Enter Arena’s Dimension

>> arenaHeight= 45;

>> arenaWidth = 45;

Note: Execute calibration process every time there

are changes to the environment setup.

2. Initialize webcam and compute transformation that gives orthogonal view

Initialize the webcam and compute the transformation that gives the orthogonal view,"
the webcam will be initialized. Later, the transformation that gives the orthogonal view of
the rover will be computed.

Now let's look at the transformation portion of this step. Typically, it is hard to place
the webcam directly over the arena, and instead the camera is placed where it takes
images from some downward angle. Image processing can be used to translate the
image to a corrected version of itself, which will make it easier for our localization
algorithm to calculate the position.

To compute the transformation of the image, click the four corners of the arena in the
image.

Important: Ensure that the rover is in the arena. If it is not, we need to execute
this section of the code once more with the rover placed in the arena.

Because the webcam takes pictures from an angle, the rover's height is altered
differently for various distances.

Fig. 17: Webcam Image

3. Compute the location offset for the robot

Fig.18(d): Right Fig. 18(a): Up Fig.18(b):Down Fig.18(c):Left

Fig. 18: Capturing images of the robot on the four edges of the arena (Top, Bottom, Left and Right)

NOTE: The localization results depend heavily on these steps and can cause
issues if the calibration is not done accurately.

Now we shall calibrate the colour threshold of the disc, to account for
the lighting. On the image that appears, ensure that you click the circles in this order:
Red first, Green next, and then Blue.

With that, we have now calibrated the parameters to get an orthogonal view of the
rover, corrected for any location offsets within that view and accounted for how
lighting can affect the RGB values for colours. All the calibration data is saved and
will be reused during the execution of the localization steps.

Similar steps would be performed for calibrating the object.

Fig. 19: Calibrating Location offset for top position

Click the points specified in the pop-up

figures (center of robot and the center

of disc) to compute offsets (Example

for top position shown).

Fig. 20: Color Threshold for the Disc

LOCALIZATION OF THE ROBOT AND THE OBJECT

Steps to perform Localisation using Webcam

1. Prepare the MATLAB Workspace
2. Enter the dimensions of the arena and calculate conversion factor.
3. Initialise the webcam
4. (a) Get the location and heading of the robot

• Calculate disc centre’s (x,y) coordinates using robotPosAng function in

pixels

• Convert (x,y) coordinates to centimeters incorporating offsets using

getLocation function
(b) Get the location of the object

• Calculate object’s (x,y) coordinates using objectPos function

• Convert (x,y) coordinates to centimeters incorporating offsets using

getLocation function

Overview of robotPosAng function

Overview of getLocation function

Overview of objectPos function

Fig. 21: Heading of the robot

Result

Exercise 6: Navigate the Arena and Move the Object

Overview of the mobile robot navigation operation

Starting position of the robot and the

object is obtained using vision-based

localisation using webcam

Final position is assigned

to in the arena

The distance to be travelled between two points are calculated using Euclidean Distance

The heading of the robot towards a desired location is calculated as follows:

• Determine which quadrant (Fig. 22) the object/location is in

Fig.22: Quadrants of the Robot

• Determine the desired heading for the robot using the arctan function

Results

Sensor

Reading

Bot Position

1 1 0 1 1 Centre Position

1 1 0 0 0 Right Position

0 0 0 1 1 Left Position

Fig. 23: Map of the mobile robot Fig.24: Position Error

Exercise 7: Line Following and Obstacle Avoidance

Line Following using PID Control

● Use 5 IR sensors to get information about the position of the robot w.r.t. the track.
● Using the feedback from the IR sensor to control the velocity of the motor.
● To control the motor speeds, PID controller shall be used.

At max, only 2 sensors will be on the line.

For IR Sensor

Digital output 0 represents IR sensor is

on white line

Digital output 1 represents IR sensor is

on black background

Fig.25: Block Diagram for Closed Loop Control

Results

𝑬𝒓𝒓𝒐𝒓 = 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒊𝒏𝒑𝒖𝒕 −∑
𝐬𝐞𝐧𝐬𝐨𝐫 𝐫𝐞𝐚𝐝𝐢𝐧𝐠(𝟎 𝟏⁄) ∗ 𝐜𝐨𝐫𝐫𝐞𝐬𝐩𝐨𝐧𝐝𝐢𝐧𝐠 𝐰𝐞𝐢𝐠𝐡𝐭

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒏𝒔𝒐𝒓𝒔 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝟎

𝟒

𝟎

Calculation of positional error from sensor data
[3]

From Table 1, the centre position is taken as the reference input.

The sensors are numbered from the left to the right. An error value of zero refers to the robot being

exactly on the center of the line. A positive error means that the robot has deviated to the right and

needs to go turn left and a negative error value means that the robot has deviated to the left and

needs to turn right.

Fig. 26: Map of the Mobile Robot Fig. 27: Position Error

Results

References

[1] (2013). Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and

Newton-Euler Methodologies: A Unified Framework. Advances in Robotics & Automation.

02. 10.4172/2168-9695.1000107.

[2] Z. U. Abideen, M. B. Anwar and H. Tariq, "Dual Purpose Cartesian Infrared Sensor Array

Based PID Controlled Line Follower Robot for Medical Applications," 2018 International

Conference on Electrical Engineering (ICEE), 2018, pp. 1-7, doi:

10.1109/ICEE.2018.8566871.

Fig.28: Map of the Mobile Robot

Fig. 29: Position Error

